
www.umbc.eduAll materials copyright UMBC unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 20 – Recursion

www.umbc.edu

Last Class We Covered

• Python’s standard library

• Importing modules

• “Random” numbers

– Pseudo randomness

– Seeding the RNG

– Generating random numbers/choices

• Three different methods

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To introduce recursion

• To better understand the concept of “stacks”

• To begin to learn how to “think recursively”

– To look at examples of recursive code

– Summation, factorial, etc.

4

www.umbc.edu5

Introduction to Recursion

www.umbc.edu

What is Recursion?

• In computer science, recursion is a way of
thinking about and solving problems

• It’s actually one of the central ideas of CS

• In recursion, the solution depends on solutions
to smaller instances of the same problem

6

www.umbc.edu

Recursive Solutions

• When creating a recursive solution, there are
a few things we want to keep in mind:

1. We need to break the problem into
smaller pieces of itself

2. We need to define a “base case” to stop at

3. The smaller problems we break down into
need to eventually reach the base case

7

www.umbc.edu

Normal vs Recursive Functions

• So far, we’ve had functions call other functions

– For example, main() calls the square() function

• A recursive function, however, calls itself

8

main()

square()

compute()

www.umbc.edu

Why Would We Use Recursion?

• In computer science, some problems are more easily
solved by using recursive methods

• For example:

– Traversing through a directory or file system

– Traversing through a tree of search results

– Some sorting algorithms recursively sort data

• For today, we will focus on the basic structure of
using recursive methods

9

www.umbc.edu

Toy Example of Recursion
def compute(intInput):

print(intInput)

if (intInput > 2):

compute(intInput-1)

def main():

compute(50)

main()

10

This is where the
recursion occurs.

You can see that the
compute() function
calls itself.

What does this
program do? This program prints

the numbers from
50 down to 2.

www.umbc.edu

Visualizing Recursion

• To understand how recursion works, it helps to
visualize what’s going on.

• Python uses a stack to keep track of function calls

• A stack is an important computer science concept

11

www.umbc.edu12

Stacks

Image from www.topwithcinnamon.com

www.umbc.edu

Stacks

• A stack is like a bunch of lunch trays in a cafeteria

• It has only two operations:

– Push

• You can push something onto the top of the stack

– Pop

• You can pop something off the top of the stack

• Let’s see an example stack in action.

13

www.umbc.edu

Stack Example

• The diagram below shows a stack over time

• We perform two pushes and two pops

14

Time: 0
Empty Stack

Time 1:
Push “2”

2

Time 2:
Push “8”

2

8

Time 3:
Pop: Gets 8

2

Time 4:
Pop: Gets 2

www.umbc.edu

Stack Details

• In computer science, a stack is a
last in, first out (LIFO) data structure

• It can store any type of data, but has only
two operations: push and pop

• Push adds to the top of the stack, hiding
anything else on the stack

• Pop removes the top element from the stack

15

www.umbc.edu

Stack Details

• The nature of the pop and push operations
also means that stack elements have a
natural order

• Elements are removed from the stack in the
reverse order to the order of their addition

– The lower elements are those that
have been in the stack the longest

16

www.umbc.edu

Stacks and Functions

• When you run your program, the computer
creates a stack for you

• Each time you call a function, the function
is pushed onto the top of the stack

• When the function returns or exits, the
function is popped off the stack

17

www.umbc.edu

Stacks and Functions Example

18

Time: 0
Empty Stack

Time 1:
Push: main()

main()

Time 2:
Push: square()

main()

square()

Time 3:
Pop: square()
returns a value.
method exits.

main()

Time 4:
Pop: main()
returns a value.
method exits.

www.umbc.edu

Stacks and Recursion

• If a function calls itself recursively, you push
another call to the function onto the stack

• We now have a simple way to visualize how
recursion really works

19

www.umbc.edu

Toy Example of Recursion
def compute(intInput):

print(intInput)

if (intInput > 2):

compute(intInput-1)

def main():

compute(50)

main()

20

Here’s the code again.

Now, that we
understand stacks, we
can visualize the
recursion.

www.umbc.edu

Stack and Recursion in Action

21

Inside compute(9):

print (intInput);  9

if (intInput > 2)

compute(intInput-1);

Inside compute(8):

print (intInput);  8

if (intInput > 2)

compute(intInput-1);

Inside compute(7):

print (intInput);  7

if (intInput > 2)

compute(intInput-1);

Time: 0
Empty
Stack

Time 1:
Push: main()

main()

Time 2:
Push:
compute(9)

main()

compute(9)

Time 3:
Push:
compute(8)

main()

compute(9)

compute(8)

Time 4:
Push:
compute(7)

main()

compute(9)

compute(8)

compute(7)

After returning
from compute(2)
pop everything

…

www.umbc.edu22

Defining Recursion

www.umbc.edu

“Cases” in Recursion

• A recursive function must have two things:

• At least one base case

– When a result is returned (or the function ends)

– “When to stop”

• At least one recursive case

– When the function is called again with new inputs

– “When to go (again)”

23

www.umbc.edu

Terminology
def f(n):

if n == 1:

return 1

else:

return f(n - 1)

base

case

recursive

case

www.umbc.edu

Recursion
def f(n):

if n == 1:

return 1

else:

return f(n + 1)

Find f(5)

We have a base case and a recursive case. What's wrong?

www.umbc.edu

Recursion

The recursive case

should call the function

on a simpler input,

bringing us closer and closer

to the base case.

www.umbc.edu

Recursion
def f(n):

if n == 0:

return 0

else:

return 1 + f(n - 1)

Find f(0)

Find f(1)

Find f(2)

Find f(100)

www.umbc.edu

Recursion
def f(n):

if n == 0:

return 0

else:

return n + f(n - 1)

f(3)

3 + f(2)

3 + 2 + f(1)

3 + 2 + 1 + f(0)

3 + 2 + 1 + 0

6

www.umbc.edu

Factorial

• 4! = 4 × 3 × 2 × 1 = 24

www.umbc.edu

Factorial

• Does anyone know the value of 9! ?

• 362,880

• Does anyone know the value of 10! ?

• How did you know?

www.umbc.edu

Factorial

• 9! = 9×8×7×6×5×4×3×2×1

• 10! = 10 × 9×8×7×6×5×4×3×2×1

• 10! = 10 × 9!

• n! = n× (n - 1)!

• That's a recursive definition!

www.umbc.edu

Factorial
def fact(n):

return n * fact(n - 1)

fact(3)

3 * fact(2)

3 * 2 * fact(1)

3 * 2 * 1 * fact(0)

3 * 2 * 1 * 0 * fact(-1)

...

www.umbc.edu

Factorial

• What did we do wrong?

• What is the base case for factorial?

www.umbc.edu

Announcements

• Project 1 is/was due Wednesday

• Homework 8 is/was released Wednesday night

– Last homework of the semester

– Due the Wednesday before Thanksgiving

• Plan ahead!

34

