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CMSC201
Computer Science I for Majors

Lecture 20 – Recursion



www.umbc.edu

Last Class We Covered

• Python’s standard library

• Importing modules

• “Random” numbers

– Pseudo randomness

– Seeding the RNG

– Generating random numbers/choices

• Three different methods
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Any Questions from Last Time?
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Today’s Objectives

• To introduce recursion

• To better understand the concept of “stacks”

• To begin to learn how to “think recursively”

– To look at examples of recursive code

– Summation, factorial, etc.
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Introduction to Recursion
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What is Recursion?

• In computer science, recursion is a way of 
thinking about and solving problems

• It’s actually one of the central ideas of CS

• In recursion, the solution depends on solutions 
to smaller instances of the same problem
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Recursive Solutions

• When creating a recursive solution, there are 
a few things we want to keep in mind:

1. We need to break the problem into 
smaller pieces of itself

2. We need to define a “base case” to stop at

3. The smaller problems we break down into 
need to eventually reach the base case
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Normal vs Recursive Functions

• So far, we’ve had functions call other functions

– For example, main() calls the square() function

• A recursive function, however, calls itself

8

main()

square()

compute()
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Why Would We Use Recursion?

• In computer science, some problems are more easily 
solved by using recursive methods

• For example:

– Traversing through a directory or file system

– Traversing through a tree of search results

– Some sorting algorithms recursively sort data

• For today, we will focus on the basic structure of 
using recursive methods
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Toy Example of Recursion
def compute(intInput):

print(intInput)

if (intInput > 2):

compute(intInput-1)

def main():

compute(50)

main()
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This is where the 
recursion occurs.

You can see that the 
compute() function 
calls itself.

What does this 
program do? This program prints 

the numbers from 
50 down to 2. 
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Visualizing Recursion

• To understand how recursion works, it helps to 
visualize what’s going on.

• Python uses a stack to keep track of function calls

• A stack is an important computer science concept

11
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Stacks

Image from www.topwithcinnamon.com
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Stacks

• A stack is like a bunch of lunch trays in a cafeteria

• It has only two operations:

– Push

• You can push something onto the top of the stack

– Pop

• You can pop something off the top of the stack

• Let’s see an example stack in action.
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Stack Example

• The diagram below shows a stack over time  

• We perform two pushes and two pops

14

Time: 0
Empty Stack

Time 1:
Push “2”

2

Time 2:
Push “8”

2

8

Time 3:
Pop:  Gets 8

2

Time 4:
Pop:  Gets 2
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Stack Details

• In computer science, a stack is a 
last in, first out (LIFO) data structure

• It can store any type of data, but has only 
two operations: push and pop

• Push adds to the top of the stack, hiding 
anything else on the stack

• Pop removes the top element from the stack

15
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Stack Details

• The nature of the pop and push operations 
also means that stack elements have a 
natural order

• Elements are removed from the stack in the 
reverse order to the order of their addition

– The lower elements are those that 
have been in the stack the longest
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Stacks and Functions

• When you run your program, the computer 
creates a stack for you

• Each time you call a function, the function 
is pushed onto the top of the stack

• When the function returns or exits, the 
function is popped off the stack
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Stacks and Functions Example
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Time: 0
Empty Stack

Time 1:
Push:  main()

main()

Time 2:
Push:  square()

main()

square()

Time 3:
Pop:  square()
returns a value.
method exits.

main()

Time 4:
Pop:  main()
returns a value.
method exits.
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Stacks and Recursion

• If a function calls itself recursively, you push 
another call to the function onto the stack

• We now have a simple way to visualize how 
recursion really works
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Toy Example of Recursion
def compute(intInput):

print(intInput)

if (intInput > 2):

compute(intInput-1)

def main():

compute(50)

main()
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Here’s the code again. 

Now, that we 
understand stacks, we 
can visualize the 
recursion.
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Stack and Recursion in Action
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Inside compute(9):

print (intInput);       9

if (intInput > 2) 

compute(intInput-1);

Inside compute(8):

print (intInput);     8

if (intInput > 2) 

compute(intInput-1);

Inside compute(7):

print (intInput);  7

if (intInput > 2) 

compute(intInput-1);

Time: 0
Empty 
Stack

Time 1:
Push:  main()

main()

Time 2:
Push:  
compute(9)

main()

compute(9)

Time 3:
Push:  
compute(8)

main()

compute(9)

compute(8)

Time 4:
Push:  
compute(7)

main()

compute(9)

compute(8)

compute(7)

After returning
from compute(2)
pop everything

…
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Defining Recursion
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“Cases” in Recursion

• A recursive function must have two things:

• At least one base case

– When a result is returned (or the function ends)

– “When to stop”

• At least one recursive case

– When the function is called again with new inputs

– “When to go (again)”

23
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Terminology
def f(n):

if n == 1:

return 1

else:

return f(n - 1)

base

case

recursive

case
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Recursion
def f(n):

if n == 1:

return 1

else:

return f(n + 1)

Find f(5)

We have a base case and a recursive case.  What's wrong?
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Recursion

The recursive case

should call the function

on a simpler input,

bringing us closer and closer

to the base case.
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Recursion
def f(n):

if n == 0:

return 0

else:

return 1 + f(n - 1)

Find f(0)

Find f(1)

Find f(2)

Find f(100)
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Recursion
def f(n):

if n == 0:

return 0

else:

return n + f(n - 1)

f(3)

3 + f(2)

3 + 2 + f(1)

3 + 2 + 1 + f(0)

3 + 2 + 1 + 0

6
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Factorial

• 4! = 4 × 3 × 2 × 1 = 24
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Factorial

• Does anyone know the value of 9!  ?

• 362,880

• Does anyone know the value of 10!  ?

• How did you know?
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Factorial

• 9! = 9×8×7×6×5×4×3×2×1

• 10! = 10 × 9×8×7×6×5×4×3×2×1

• 10! = 10 × 9!

• n! = n× (n - 1)!

• That's a recursive definition!
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Factorial
def fact(n):

return n * fact(n - 1)

fact(3)

3 * fact(2)

3 * 2 * fact(1)

3 * 2 * 1 * fact(0)

3 * 2 * 1 * 0 * fact(-1)

...



www.umbc.edu

Factorial

• What did we do wrong?

• What is the base case for factorial?
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Announcements

• Project 1 is/was due Wednesday

• Homework 8 is/was released Wednesday night

– Last homework of the semester

– Due the Wednesday before Thanksgiving

• Plan ahead!
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